Поиск в словарях
Искать во всех

Большая советская энциклопедия - ссср. технические науки3

 

Ссср. технические науки3

ссср. технические науки3
Летом 1895 А. С. Попов применил свой приемник радиосигналов (снабдив его некоторыми дополнит. узлами) для регистрации электромагнитного излучения гроз, что положило начало радиометеорологии. В 1899 была обнаружена (П. Н. Рыбкин, Д. С. Троицкий) способность когерера детектировать принимаемые им радиосигналы (детекторный эффект). На основе этого эффекта удалось значительно увеличить дальность радиотелеграфирования. К 1903 относятся первые опыты по радиотелефонированию при помощи искрового передатчика (С. Я. Лифшиц). Во время Русскo-японской войны 1904—05 на кораблях русского флота использовались искровые радиостанции производства Кронштадтских мастерских (основаны в 1900). В 1910 мастерские были переведены в Петербург и преобразованы в Радиотелеграфное депо морского ведомства, а в 1915 — в радиотелеграфный завод — первое отечественное радиотехническое предприятие. С 1909 Почтовое ведомство начало строительство гражданских искровых радиостанций в городах центральной России и береговых радиостанций, предназначавшихся для связи с кораблями. Начались исследования (С. М. Айзенштейн, 1906) по практическому использованию незатухающих колебаний, полученных посредством дуговых генераторов, а затем электрических машин ВЧ (В. П. Вологдин, 1912, М. В. Шулейкин, 1913). В 1910 было создано первое научно-исследовательское учреждение — «Поверочное отделение» Кронштадтских радиотелеграфных мастерских (позже преобразованное в лабораторию при Радиотелеграфном депо морского ведомства), руководителями которого в разное время являлись А. А. Петровский, Л. Д. Исаков, Шулейкин. Под рук. И. И. Ренгартена незадолго до начала 1-й мировой войны 1914—18 развернулись исследовательской работы по радиопеленгации. В начале 20 в. в результате успехов электронной теории и на основе достижений вакуумной техники и технологии электрических ламп накаливания началась разработка электронных приборов. Использование электронных приборов для генерирования, усиления, преобразования электромагнитных колебаний (очень высокой, по тому времени, частоты — до 107 гц) и формирования кратковременных сигналов различной формы коренным образом изменило характер дальнейшего развития радиотехники и электросвязи. В 1910—17 в России (в отдельных лабораториях) были созданы (В. И. Коваленков, Н. Д. Папалекси, В. И. Волынкин, А. А. Чернышев, М. А. Бонч-Бруевич) первые отечественные электронные приборы. С победой Октябрьской революции 1917 начался новый этап развития отечеств. радиотехники и электронной промышленности. 19 июля 1918 СНК РСФСР декретом о централизации радиотехнического дела заложил политические и организационные основы развития советской радиотехники. Все радиотехническое хозяйство страны передавалось в ведение Народного комиссариата почт и телеграфов. В. И. Ленин видел в радио могучее средство массовой информации — «газету без бумаги и “без расстояний”...» (Полн. собр. соч., 5 изд., т. 51, с. 130), предсказывал, что радио «...будет великим делом» (там же). По его указанию началось строительство нескольких крупных радиостанций, был осуществлен ряд организационных мероприятий, направленных на ускорение развития радиосвязи и радиовещания. В декабре 1918 Ленин подписал Положение «О Нижегородской радиолаборатории» (НРЛ) — первом советском научно-исследовательском центре (одним из его руководителей был Бонч-Бруевич), с которым связаны многие достижения в области радиотехнических знаний, в создании электронных приемно-усилительных и генераторных ламп (в частности, первых в мире мощных — 25 и 40 квт — ламп с водяным охлаждением), радиоприборов, в организации радиовещания. В 1920 в Москве (на Шаболовке) было завершено строительство радиостанции на дуговых генераторах мощностью 100 квт, для которой по проекту В. Г. Шухова была сооружена металлическая башня, ставшая эмблемой советского радиовещания. В 20-х гг. были построены еще несколько радиостанций на дуговых генераторах или электрических машинах ВЧ конструкции Вологдина мощностью от 50 до 100 квт: в Люберцах (под Москвой) начал функционировать выделенный пункт для приема радиотелеграфных сообщений (1923). Другой распространенной формой вещания (особенно в городах) стало проводное вещание. Развитию радиовещания и размаху радиолюбительского движения способствовало постановление СНК (июль 1924), разрешавшее создание «частных приемных станций». Плодотворную роль в реализации первых научных достижений советской радиотехники сыграли Российское общество радиоинженеров (1918) и Радиоассоциация, возглавленные видными учеными (Шулейкин, В. К. Лебединский, Петровский) и объединившие научные силы страны для решения многих теоретических и практических вопросов развития радио. Среди первых научно-исследовательских центров Радиолаборатория военного ведомства (1918, Москва; в 1924 была преобразована в Научно-испытательный институт связи Красной Армии) и Центральная радиолаборатория (1923, Петроград); значит. вклад в развитие радиовещания внесла Казанская база радиоформирований (1918), создавшая экономичные образцы радиопередающей и приемно-усилительной аппаратуры. В 1922—40 осуществлялось дальнейшее расширение исследований в области электроники и организации производства электронных приборов (приемно-усилительных и генераторных ламп, газоразрядных выпрямителей и преобразователей, электроннолучевых трубок, рентгеновских приборов и т. д.). В 1922 постановлением ВСНХ в Петрограде был создан электровакуумный завод (руководители М. М. Богословский и С. А. Векшинский); в 1928 завод слился с электроламповым заводом «Светлана». В научно-исследовательской лаборатории этого завода, организованной Векшинским, были проведены серьезные исследования в области физики и технологии электронных приборов (по эмиссионным свойствам катодов, газовыделению металлов и стекла, вакуумной технике и т. д.). Лаборатория Векшинского после присоединения к ней других лабораторий выросла в начале 30-х гг. в крупную научно-исследовательскую организацию, получившую в 1934 название Отраслевая вакуумная лаборатория (ОВЛ). До 1937 ОВЛ руководил Векшинский, до 1941 — С. А. Зусмановский. В ОВЛ, ставшей по существу основным научным центром советской электроники, работали многие крупные специалисты, возглавившие исследования по основным направлениям электронной техники: Ю. Д. Волдырь, В. С. Лукошков, С. М. Мошкович, С. А. Оболенский, Е. Л. Подгурский, А. А. Шапошников и мн. др. В 1928—30 на Московском электрозаводе был организован отдел электронных ламп. Результаты исследований свойств диэлектриков и тонких пленок, выполненных в 30-х гг. (А. Ф. Иоффе, А. Ф. Вальтер, П. П. Кобеко, Г. И. Сканави и др.) в Физико-техническом институте АН СССР, послужили научной основой для организации производства пассивных электронных приборов (конденсаторов, резисторов и т. п.). Создание и развитие этого направления электроники связано с именами Н. П. Богородицкого, Е. А. Гайлиша, К. И. Мартюшова и др. В связи с быстрым развитием радиовещания важной задачей стало создание парка радиоприемников. В середине 20-х гг. прием радиосигналов осуществлялся в основном с помощью простых детекторных радиоприемников и регенеративных приемников на электронных лампах (главным образом с питанием от аккумуляторных батарей). На основе способности некоторых кристаллических полупроводников усиливать и генерировать электрические колебания в 1922 были разработаны (О. В. Лосев) полупроводниковый регенеративный, а затем и гетеродинный приемник (кристадин). В начале 30-х гг. созданы громкоговорящие радиоприемные устройства с питанием от сети переменного тока, в 1936—41 — супергетеродинные радиоприемники. Для решения научно-технических задач строительства мощных радиопередающих станций в конце 20-х гг. было организовано Бюро мощного радиостроения, преобразованное в 1930 в Отраслевую радиолабораторию передающих устройств. В ней сотрудничали многие ведущие радиоспециалисты (А. Л. Минц, З. И. Модель, И. Х. Невяжский, М. С. Нейман) Н. И. Оганов и др.). К этому периоду относится создание в Москве радиостанции ВЦСПС (1929) мощностью 100 квт и однотипных с ней радиостанций для Ленинграда и Новосибирска (1932). В 1933 вступила в строй самая, по тому времени, мощная в мире 500-киловаттная радиостанция им. Коминтерна, передатчик которой был построен по т. н. блочному принципу (содержал в оконечной ступени нескольких однотипных блоков, нагруженных на общую антенну). Оригинальная «система сложения мощностей в эфире» на коротких волнах была предложена Невяжским и реализована им в радиостанции РВ-96 мощностью 120 квт. К концу 30-х гг. насчитывалось 77 радиовещат. станций общей мощностью свыше 2 Мвт. Своеобразное направление в технике мощного радиостроения составила разработка разборных генераторных ламп (Минц, Оганов и др.). В связи с интенсивным освоением диапазона СВЧ, в СССР были созданы первые генераторные магнетронные приборы — разрезной магнетрон (А. А. Слуцкий и Д. С. Штейнберг, 1926), многорезонаторный магнетрон (Н. Ф. Алексеев и Д. Е. Маляров под руководством Бонч-Бруевича, 1939). Заметные успехи были достигнуты в разработке генераторных и приемно-усилительных триодов СВЧ (Зусмановский, Н. Д. Девятков и др.). За годы довоен. пятилеток были достигнуты значит. успехи в области электросвязи. Начали функционировать первые коротковолновые линии радиосвязи — внутренние (например, Москва — Ташкент) и международные (Москва — Нью-Йорк, Москва — Париж). Была реконструирована и преобразована в крупный передающий радиоцентр Октябрьская радиостанция в Москве; в Бутово (под Москвой) создан приемный радиоцентр. оборудованный с учетом новейших достижений в области радиотехники. В 1932—34 были введены в действие первые линии радиосвязи на метровых волнах (Москва — Ногинск, Москва — Кашира), внедрена УKB связь на ВМФ. К концу 30-х гг. была создана система факсимильной (фототелеграфной) связи между рядом городов страны, а также между Москвой и Берлином. В 1935 была разработана Генеральная схема развития связи СССР, согласно которой намечалось строительство 14 узлов связи, соединенных между собой и с Москвой проводными линиями и радиолиниями; предполагалась унификация аппаратуры телефонной, телеграфной, факсимильной связи и радиовещания. Большая часть намеченной программы была осуществлена в предвоенные годы (в частности, разработана и внедрена в 1941 12-канальная система В-12 с частотным разделением каналов для воздушных линий связи), остальная — после Великой Отечественной войны 1941—1945 с учетом достижений науки и техники. В конце 20-х гг. в СССР началось развитие телевидения. С 1931 (в Москве, а вскоре и в других городах) проводились регулярные телевизионные передачи на средних волнах по системе малокадрового механического телевидения. С середины 30-х гг. механические системы постепенно вытеснялись электронными, разработка которых была начата в России еще в 1907 (Б. Л. Розинг) и плодотворно продолжена советскими учеными. Так, в 1931 был изобретен иконоскоп (С. И. Катаев), в 1933 — супериконоскоп (П. В. Тимофеев, П. В. Шмаков), в том же году разработаны высокочувствительная трубка умножительного типа (Л. А. Кубецкий), трубка с разверткой медленными электронами (В. И. Кузнецов), в 1938 — трубка с двухсторонней мозаичной мишенью (Г. В. Брауде). Три последние легли в основу современного суперортикона. В начале 40-х гг. работали телевизионные центры в Москве, Ленинграде и Киеве. Был налажен выпуск телевизионных приемников (ТК-1, 17ТН1, 17ТНЗ). К 1938 была создана крупная научно-исследовательская и промышленная база по производству радиотехнической аппаратуры. Развитие электронной промышленности и радиопромышленности в значительной мере способствовало техническому прогрессу во всех областях народного хозяйства, науки и техники, укреплению обороноспособности государства. В 30-х гг. окончательно сформировалась и получила мировое признание советская школа радиотехники и радиофизики; была подготовлена научно-техническая база для последующего развития электросвязи, телевидения, радиолокации, радионавигации и других областей науки и техники. К середине 30-х гг. относится зарождение в СССР радиолокации. По инициативе М. М. Лобанова и П. К. Ощепкова в 1933—35 развернулись исследования по использованию для радиолокации методов непрерывного излучения (Ю. К. Коровин, Б. К. Шембель и др.), в 1937 — импульсного метода (Д. А. Рожанский, Ю. Б. Кобзарев, В. В. Цимбалин, П. А. Погорелко, Н. Я. Чернецов и др.). В 1939 начался промышленный выпуск радиолокационных станций (РЛС) непрерывного излучения (типа РУС-1); в 1940 — импульсных РЛС, у которых излучение и прием осуществлялись с помощью одной — общей — антенны («Редут», РУС-2; во время Великой Отечественной войны было налажено производство малогабаритных и весьма надежных РЛС «Пегматит»). Большую роль в развитии советской радиолокации и тесно связанной с ней радионавигации сыграли работы А. Ф. Иоффе, С. И. Вавилова, А. А. Чернышева, А. И. Берга, Б. А. Введенского, М. А. Леонтовича, Л. И. Мандельштама, Н. Д. Папалекси, В. И. Баженова, М. В. Шулейкина, А. А. Пистолькорса, А. Н. Щукина, Я. Н. Фельда и др. Еще в конце 20 — начале 30-х гг. началось применение методов и устройств радиотехники и электроники в областях, находящихся вне сферы традиционных (электросвязь, радиовещание, телевидение и т. д.) приложений радиотехники. Так, в 1928 С. Я. Соколов создал ультразвуковой дефектоскоп для контроля качества металлических материалов и изделий. Эта работа положила начало развитию интроскопии. В середине 20-х гг. В. П. Вологдин начал применение ВЧ колебаний для теплового воздействия на материалы в технологических целях. Это направление позволило разработать целый ряд методов и устройств, эффективно используемых в современных установках ВЧ промышленной технологии. В конце 30-х гг. начались работы по созданию электронного микроскопа. Наибольшие успехи были достигнуты в Государственном оптическом институте в Ленинграде, где в 1940 удалось разработать электронный микроскоп, позволявший получать увеличение до 104 (А. А. Лебедев). С первых дней Великой Отечественной войны усилия специалистов были направлены на обеспечение бесперебойной связи Ставки Верховного Главнокомандования со штабами фронтов, снабжение Советской Армии необходимым радиооборудованием, разработку новых образцов войсковых радиостанций, пеленгаторов и другой аппаратуры. Интенсивно развивалась отечеств. радиолокация (А. И. Берг, Ю. Б. Кобзарев и др.), был проведен ряд важных теоретических исследований в области распространения радиоволн (В. А. Фок и др.), антенных устройств (А. А. Пистолькорс и др.), волноводных устройств (И. И. Вольман, А. Л. Драбкин, М. А. Леонтович и др.), интерференционных навигац. систем (Е. Я. Щеголев, Л. И. Мандельштам и др.); создана новая аппаратура связи (В. А. Котельников, М. С. Нейман и др.); разработаны и внедрены системы телеграфной и факсимильной связи с частотной модуляцией. В 1943 была сооружена мощная (1200 квт) средневолновая радиовещательная станция (группа ученых и инженеров, рук. А. Л. Минц). С конца 1942 возобновилось производство аппаратуры для восстановления радиоузлов на территории, освобожденной от оккупантов. Для развития радио начиная с 40-х гг. характерно органическое слияние радиотехники и электроники и тесная связь этих научно-технических областей, с одной стороны, с радиофизикой, физикой твердого тела, оптикой и механикой, с другой — с электротехникой, автоматикой и технической кибернетикой. В результате этого слияния родилось комплексное направление — радиоэлектроника. Это направление, обогащенное научными достижениями в различных областях знания, существенно изменило характер представлений о возможностях радиотехники (прежде всего таких ее разделов, как техника СВЧ, импульсная техника и др.). Техника СВЧ, начавшая формироваться еще в 30-х гг., достигла больших успехов после 1945. Были разработаны новые приборы для генерирования и усиления колебаний СВЧ: мощные многорезонаторные магнетроны, клистроны, лампы бегущей волны (ЛБВ) и лампы обратной волны (ЛОВ), СВЧ-переключатели. Первые в СССР мощные клистроны (С. А. Зусмановский и др.), используемые в ускорителях, развивали импульсную мощность 20 Мвт при средней мощности 2—20 квт. Были разработаны также клистроны непрерывного действия для тропосферной, радиорелейной, космической связи, радиолокации и радионавигации. Появились отражательные клистроны с внешней стабилизацией и перестраиваемыми резонаторами, широкополосные прямопролетные усилительные клистроны; начали выпускаться ЛОВ для субмиллиметрового диапазона. В разработку этих ламп большой вклад внесли Девятков, В. А. Афанасьев, М. Б. Голант, Зусмановский, В. Ф. Коваленко, Л. А. Парышкуро и др. В 1967 в Научно-исследовательском радиофизическом институте при Горьковском университете были созданы мощные генераторы миллиметровых волн, работающие по принципу циклотронного резонанса (А. В. Гапонов-Грехов). В разработку технологии и организацию массового производства новых электровакуумных приборов большой вклад внесли И. А. Живописцев, А. А. Захаров, Р. А. Нилендер, А. А. Сорокин, М. М. Федоров и мн. др. В 50-х гг. в СССР зародилась новая самостоятельная область науки и техники — квантовая электроника, главным достижением которой явилось создание в 1954—55 квантового (молекулярного) генератора (Н. Г. Басов, А. М. Прохоров). Прогресс импульсной техники, сформировавшейся в 50-х гг. в самостоятельную область радиоэлектроники, был вызван, с одной стороны, бурным развитием радиолокации, телевидения, телеуправления, с другой — вычислительной техники и ядерной физики (в частности, в таких ее аспектах, как разработка аппаратуры для ускорителей, измерительная техника). В эти же годы сложилась и начала быстро развиваться техника наносекундных импульсов как актуальное направление многих областей экспериментальной физики, измерительной и вычислительной техники. Достижения физики твердого тела и теории полупроводников в конце 40-х гг. привели к развитию полупроводниковой электроники (а затем и интегральной микроэлектроники). Уже в начале 50-х гг. электронная промышленность СССР освоила производство маломощных ВЧ транзисторов для приемной техники. За короткий срок полупроводниковые приборы заметно потеснили (а в некоторых областях применения практически вытеснили) приемно-усилительные лампы. Так, на основе полупроводниковых приборов были разработаны ЭВМ 2-го поколения (в т. ч. бортовые — для размещения на самолетах и космических летательных аппаратах), системы автоматизированного управления, аппаратура связи; в 70-х гг. большинство выпускаемых радиовещательных приемников — транзисторные. Благодаря достижениям полупроводниковой электроники и микроэлектроники успешно решается одна из важнейших проблем радиоэлектроники — повышение надежности радиоаппаратуры и связанные с ней вопросы микроминиатюризации. Исключительно важную роль в развитии микроэлектроники сыграло появление (в конце 50-х гг.) и быстрое распространение планарной технологии, обусловившей интенсивное развитие полупроводниковой интегральной микроэлектроники, которая позволила осуществить переход к методу группового изготовления полупроводниковых приборов (создание на одном полупроводниковом кристалле функционально законченного электронного устройства — т. н. интегральной схемы). В связи с необходимостью быстрейшего освоения и внедрения технологии полупроводниковых приборов, разработки соответствующего оборудования и т. д. в 1953 в Москве был создан НИИ полупроводниковой электроники, а затем в разных городах — целая сеть НИИ, КБ и заводов. В обеспечении качественного и количественного развития полупроводниковой электроники и микроэлектроники участвовали организации АН СССР, Министерства цветной металлургии, химической промышленности и др. В создании электронной промышленности (в т. ч. полупроводниковой) большие заслуги принадлежат А. И. Шокину; в осуществлении перехода от «первого поколения» радиоаппаратуры (на основе электровакуумных приборов) ко «второму» (на полупроводниковых приборах) и «третьему» (на интегральных схемах) — В. Д. Калмыкову. Большой вклад в создание полупроводниковой электроники и микроэлектроники внесли ученые и инженеры А. Ф. Иоффе, Н. П. Сажин, Я. И. Френкель, Б. М. Вул, В. М. Тучкевич, Г. Б. Абдуллаев, Ж. И. Алферов, Л. В. Келдыш, Я. А. Федотов, К. А. Валиев, А. Ю. Малинин, С. Г. Калашников, В. Г. Колесников и мн. др. Огромное распространение в радиоэлектронике нашли ферриты. Они используются в антенно-фидерных трактах СВЧ, в параметрических усилителях, контурах радиоаппаратуры и т. д. ферриты с прямоугольной петлей гистерезиса применяются в ячейках магнитной памяти ЭВМ. В связи с развитием в СССР космической связи, радиолокации, радиоастрономии, телевидения были разработаны параметрические и квантовые приемно-усилительные устройства, обладающие чрезвычайно малыми собственными шумами. Чувствительность таких устройств достигает 10-18 вт. На основе достижений теории радиоприема (В. И. Сифоров и др.), теории потенциальной помехоустойчивости (В. А. Котельников и др.), статистической теории обнаружения, теории информации и кодирования удалось построить радиосистемы для приема слабых сигналов (порядка 10-22 вт/м2) с космических кораблей и автоматических межпланетных станций, удаленных от Земли на десятки млн. км. Были решены многие теоретические вопросы распространения радиоволн, отражения и поглощения их атмосферой и другими объектами. С середины 40-х гг. советское телевидение перешло на более высокий стандарт разложения телевизионного кадра (625 строк) и частотную модуляцию в канале звукового сопровождения; сложилась разветвленная передающая телевизионная сеть, в которой обмен программами между городами осуществляется по кабельным линиям (например, по 1920-канальной системе передачи по коаксиальному кабелю; разработана в 1958), радиорелейным, а с 1965 и спутниковым линиям связи (через спутник связи «Молния-1»; с 1967 — по системе «Орбита»). Успешно развивается цветное телевидение. Совместными усилиями специалистов СССР и Франции была разработана и в 1967 принята система цветного телевидения СЕКАМ, совместимая с системой черно-белого телевидения. В телевизионной аппаратуре все шире используются полупроводниковые приборы. Получило развитие использование фототелевизионной аппаратуры при исследовании космического пространства (впервые была установлена на борту станции «Луна-3» в 1959). В 1964 при СЭВ была создана постоянная Комиссия по радиопромышленности и электронной промышленности, координирующая деятельность специалистов социалистических стран в области радиотехники и электроники. Для развития электросвязи в СССР характерны следующие тенденции: полная автоматизация процессов коммутации; применение ЭВМ для управления процессами соединений абонентов квазиэлектронных и электронных систем коммутации; внедрение унифицированных технических средств многоканальной связи, обеспечивающих возможность организации в одном тракте связи нескольких каналов, используемых для электросвязи различных видов (телефонной, телеграфной, факсимильной, передачи данных, видеотелефонной); разработка многоканальных систем с временным разделением каналов; разработка и освоение волноводных и световодных линий связи и др. Внедрение радиоэлектроники в связь продолжало оставаться актуальнейшей задачей, диктуемой стремительным ростом потоков информации и, как следствие, требованиями увеличения скорости и точности ее передачи, повышения надежности и помехоустойчивости аппаратуры связи. Решение этой задачи основано на разработке новых интегральных микросхем для систем с электронной коммутацией сообщений и каналов, систем с временным уплотнением линий связи (в частности, систем с импульсно-кодовой модуляцией). Число электронных компонентов в современной аппаратуре связи непрерывно возрастает (за десятилетие приблизительно в 10—20 раз). Развитие электросвязи в СССР идет по пути создания разработанной в 60-х гг. и планомерно внедряемой Единой автоматизированной системы связи (ЕАСС). Многообразие форм обслуживания абонентов ЕАСС обусловливает целесообразность интеграции сетей связи на единой технической основе. Периодические издания: «Радиотехника и электроника» (с 1956), «Радиотехника» (с 1946), «Электросвязь» (с 1933), «Радио» (с 1924), «Микроэлектроника» (с 1972), «Электротехника» (с 1930). См. раздел Связь, а также статьи Электроника, Радиоэлектроника, Полупроводниковая электроника, Микроэлектроника, Квантовая электроника, Радиотехника, Сверхвысоких частот техника, Импульсная техника, Радиофизика, Электросвязь, Радиосвязь, Телефонная связь, Телеграфная связь, Факсимильная связь, Передача данных, Телевидение, Космическая связь, Единая автоматизированная система связи. В. М. Родионов. Техническая кибернетика. Вычислительная техника Техническая кибернетика возникла на современном этапе развития теории и практики автоматического регулирования и управления, она является научной базой комплексной автоматизации производства, транспортных, энергетических и других сложных систем управления. Основы классической теории автоматического управления были заложены в конце 19 в. в трудах русских ученых И. А. Вышнеградского, А. М. Ляпунова и Н. Е. Жуковского. В результате победы Октябрьской революции в 1917 и индустриализации страны сложились объективные условия для эффективного развития промышленного производства и его автоматизации. В 30-х гг. в крупнейших вузах СССР были введены новые специальности — автоматика и телемеханика, а в 1939 в Москве организован ведущий научный центр — Институт автоматики и телемеханики (технической кибернетики) АН СССР. Исследования в области анализа и синтеза систем автоматического регулирования (САР), и прежде всего линейных САР, выполненные советскими учеными в 30—40-х гг., явились важным подготовит. этапом формирования технической кибернетики в ее современном понимании. Были разработаны и исследованы критерии устойчивости линейных САР (А. В. Михайлов, 1938), развиты основные разделы теории устойчивости линейных САР (М. В. Мееров, Ю. И. Неймарк, Л. С. Понтрягин, Я. З. Цыпкин, А. Е. Барбашин и др.). Разработан метод автономности для исследования многосвязных линейных САР (Н. Н. Вознесенский, 1938). Создана теория инвариантных САР (Г. В. Щипанов, 1939; Н. Н. Лузин, 1940; В. С. Кулебакин, 1948; Б. Н. Петров, А. Г. Ивахненко, А. Ю. Ишлинский и др.). Первостепенное значение имели работы советских ученых в области теории нелинейных САР. Разработан метод фазового пространства для анализа систем с кусочно-линейными характеристиками и на его основе — метод точечных преобразований (А. А. Андронов, А. А. Витт и С. Э. Хайкин, 1937, А. Г. Майер). Развитию современной теории устойчивости нелинейных САР способствовали работы Б. В. Булгакова, Н. Н. Красовского, А. И. Лурье, А. А. Воронова, И. Г. Малкина. В 60-х гг. была развита новая концепция устойчивости, позволившая подойти к анализу широкого класса задач автоматического управления с единых позиций (Барбашин). В 30 — начале 40-х гг. в СССР создана теория метода гармонического баланса (Н. М. Крылов и Н. Н. Боголюбов, 1934, 1937) и на ее основе разработан приближенный метод анализа периодических режимов в нелинейных САР (Л. Е. Гольдфарб, 1940; В. А. Котельников, 1941; Е. П. Попов, 1953—60). Выполнены уникальные работы по статистическим методам анализа нелинейных систем (Андронов, Витт и Л. С. Понтрягин, 1933; В. С. Пугачев, 1944). Разработана общая теория периодических режимов в релейных САР (Неймарк, 1953). В конце 40-х гг. в СССР были реализованы системы с переменной структурой, а в 50—60-х гг. разработана общая теория таких систем (В. А. Масленников, С. В. Емельянов, Б. Н. Петров, В. И. Уткин и др.). Фундаментальные результаты получены при разработке теории систем оптимального управления (СОУ). В области теории детерминированных СОУ предложен общий метод определения критерия оптимальности — принцип максимума Понтрягина (1956). Разработаны: теория оптимального управления объектами с распределенными параметрами (А. Г. Бутковский, 1959—73); теория стабилизации управляемых систем на основе синтеза методов теории устойчивости и теории оптимальных процессов (Красовский). Работа А. Н. Колмогорова по теории фильтрации (1941) явилась исходной в развитии статистических методов анализа СОУ, а исследование Котельникова (1956) — первой работой по применению этих методов для анализа нелинейных СОУ; разработана общая теория оптимизации систем управления на базе статистических методов (Пугачев и др.). Построена теория дуального управления (А. А. Фельдбаум, 1963). Начало теоретического исследования и практической реализации адаптивных (самоприспосабливающихся) систем связано с изучением экстремальных САР (Ю. С. Хлебцевич, 1940; В. В. Казакевич, 1946, 1949); в СССР впервые была сформулирована задача построения многоканальных экстремальных систем, а также рассмотрены методы поиска экстремума (Фельдоаум, 1956—59). Ряд важных теоретических исследований и практических разработок выполнен по беспоисковым самонастраивающимся системам (А. А. Красовский, В. В. Солодовников, Фельдбаум и др.), адаптивным и обучающимся системам (Я. З. Цыпкин). Советским ученым принадлежит приоритет в практическом применении методов распознавания образов для незрительных задач: в 1964 разработана программа «Кора-3» для распознавания нефтеносных пластов (М. М. Бонгард, М. Н. Вайнцвайг, М. А. Губерман, М. Л. Извекова, М. С. Смирнов). Существенные успехи достигнуты при разработке ряда разделов теории релейных устройств и автоматов. Выполнены первые работы по методам анализа структуры релейных устройств (А. К. Кутти, 1928; М. Цимбалистый, 1928; В. А. Розенберг, 1939), применению аппарата алгебры логики (В. И. Шестаков, 1935—41) и систематическому изложению основ теории релейных устройств (М. А. Гаврилов, 1950—54). Советским ученым принадлежат первые работы, в которых с целью повышения надежности релейных устройств и автоматов вводится избыточность, основанная на эффективных методах кодирования (Гаврилов, 1960; А. Д. Закревский, 1961). Важный аспект теории автоматов — разработка формализованных языков для описания функционирования и синтеза релейных устройств и конечных автоматов (А. А. Ляпунов, 1952—58, Ю. А. Базилевский, Гаврилов, В. М. Глушков, Закревский, А. А. Летичевский, Ю. Л. Сагалович, В. А. Трахтенброт и др.). Советским ученым принадлежит приоритет в разработке потенциально-импульсных автоматов (А. Д. Таланцев, 1959; В. Г. Лазарев и Е. И. Пийль, 1964). В 60-х гг. была создана теория пульсирующих и растущих автоматов (Я. М. Бардзинь и др.). Построены теории поведения автоматов в случайных средах (М. Л. Цетлин, 1961—63). Все большее значение приобретают исследования по играм автоматов, их коллективному поведению, вероятностным автоматам (Р. Г. Бухараев, В. И. Варшавский, И. М. Гельфанд, Лазарев и др.). Важным и быстро развивающимся направлением технической кибернетики является управление сложными техническими системами. Определению критерия, по которому можно судить о сложности той или иной системы, анализу и синтезу сложных систем посвящены работы А. И. Берга, Н. П. Бусленко, Колмогорова, Г. Н. Поварова, Г. С. Поспелова, В. А. Трапезникова, Ю. И. Черняка и др. Создана модельная теория ситуационного управления (Д. А. Поспелов, В. Н. Пушкин). Существ. вклад был внесен в теорию передачи информации. Первые исследования в этой области были проведены Котельниковым в 1933. Математические основы теории заложены в трудах Колмогорова и А. Я. Хинчина. С середины 50-х гг. в СССР начался период быстрого развития теории передачи информации. Большая роль в этом принадлежит А. А. Харкевичу, с деятельностью которого связано основание в 1961 ведущего центра в этой области знаний — Института проблем передачи информации АН СССР (Москва). С 1966 Институт возглавляет В. И. Сифоров. Значительные успехи были достигнуты в исследованиях по теории информации (Сифоров, Р. Л. Добрушин, И. А. Овсеевич, М. С. Пинскер, Б. С. Цыбаков), теории кодирования (Э. Л. Блох, К. Ш. Зигангиров, В. В. Зяблов и др.), теории обработки изображений (Д. С. Лебедев, Л. П. Ярославский), теории распознавания образов (И. Ш. Пинскер, И. Т. Турбович, В. С. Фаин, Г. И. Цемель), биологической кибернетике (А. Л. Вызов, В. С. Гурфинкель, Е. А. Либерман, М. Л. Шик, А. Л. Ярбус). Быстрыми темпами ведутся исследования по передаче информации в сетях связи; создается Единая автоматизированная сеть связи СССР — ЕАСС (впервые эта задача была поставлена Харкевичем в 1956). В Институте проблем передачи информации в 60-х гг. созданы основы теории распределения информации (Лазарев, В. И. Нейман, В. Н. Рогинский, А. Д. Харкевич и др.). В организации исследований в области кибернетики и ее практическом применении, а также в разработке методологических основ кибернетики вообще и технической кибернетики, в частности, особенно большие заслуги принадлежат Бергу. Область прикладных исследований технической кибернетики охватывает широкий круг вопросов, связанных с общими принципами разработки автоматов и систем управления, а также методов синтеза цифровых вычислительных устройств для программного управления (Воронов, Глушков. Н. Н. Моисеев). Большое внимание уделяется ЭВМ и их математическому обеспечению. Это обусловлено, во-первых, тем, что на основе ЭВМ создаются наиболее сложные системы управления, во-вторых, тем, что реализация таких систем по масштабам ведущихся работ (1976) намного опережает реализацию всех других систем управления. Советские ученые внесли значительный вклад в развитие вычислит. техники, причем первые крупные достижения в данной области связаны с созданием аналоговых устройств. В СССР были разработаны основы построения сеточных моделей (С. А. Гершгорин, 1927) и предложена идея электродинамического аналога (Н. Минорский, 1936). В 40-х гг. была начата разработка электронных ПУАЗО на переменном токе и первых ламповых интеграторов (Л. И. Гутенмахер). В 1949 был построен ряд аналоговых вычислительных машин на постоянном токе (под руководством В. Б. Ушакова, Трапезникова, Котельникова и С. А. Лебедева). Среди средств современной вычислительной техники доминирующее положение занимают универсальные электронные ЦВМ. Первая в СССР электронная ЦВМ (МЭСМ) была построена в 1950. В 1952 была разработана ЭВМ БЭСМ — самая быстродействующая (по тому времени) в Европе (8 тыс. операций в сек). Проекты МЭСМ и БЭСМ были разработаны под рук. Лебедева. В 1952 была построена ЦВМ «М-2» (под руководством И. С. Брука). Серийное производство электронных ЦВМ 1-го поколения в СССР было начато в 1953 (ЦВМ «Стрела», разработанная по проекту Ю. Я. Базилевского). В 1959 в МГУ была создана ЦВМ «Сетунь» — первая в мире ЦВМ, работающая в троичной системе счисления. В 1-й половине 60-х гг. в СССР началось производство ЭВМ 2-го поколения. К числу наиболее крупных разработок 60-х гг. принадлежат: вычислительная система БЭСМ-6 (созданная под руководством Лебедева), малые ЦВМ серии МИР (созданные под. рук. Глушкова), малые ЦВМ серии «Наири» (главный конструктор Г. Е. Овсепян), серия ЦВМ «Минск» (созданная под руководством Г. П. Лопато и В. В. Пржиялковского), семейство ЦВМ «Урал» с единой архитектурой (главный конструктор Б. И. Рамеев), управляющая мини-ЭВМ УМ-1-НХ (главный конструктор Ф. Г. Старос) и др. Машина БЭСМ-6 (1966) по номинальному быстродействию (1 млн. операций в сек) значительно превосходила наиболее мощные отечеств. ЦВМ 1-го поколения. Быстродействие БЭСМ-6 было достигнуто преимущественно благодаря мультипрограммному режиму работы. В машине используется совмещение во времени работы внешних накопителей и процессора, перекрытие циклов работы модулей оперативной памяти и опережающая подготовка арифметических команд в устройстве управления. Малые ЦВМ серии МИР (МИР-1, 1966; МИР-2, 1969) были разработаны для выполнения инженерных расчетов. Входной алгоритмический язык машин максимально приближен к языку инженерных расчетов. В серии МИР впервые применено ступенчатое микропрограммирование, позволяющее использовать небольшой объем памяти для записи сложных программ и повысить производительность ЦВМ. Важная особенность МИР-2 — наличие индикаторного устройства со световым пером, которое впервые было использовано для визуального контроля вычислительного процесса. В развитии программирования существенную роль сыграл операторный метод (А. А. Ляпунов, 1952—58), применение которого позволило расчленить и формализовать процесс составления программы. Операторный метод стал основой разработки формальных методов изучения программы и проблемно-ориентированных алгоритмических языков. Выполнен ряд крупных работ по вычислительной математике (А. А. Дородницын, Бусленко, С. С. Лавров, Г. И. Марчук и др.) и математическому обеспечению ЦВМ (Глушков, А. П. Ершов, М. Р. Шура-Бура и др.). В начале 60-х гг. советскими учеными был предложен ряд концепций, реализация которых началась в 70-х гг. Таковы, например, концепции создания государственной сети вычислительных центров и иерархической сети автоматизированных систем управления народным хозяйством СССР (Глушков); концепция семейства ЭВМ, совместимых по математическому обеспечению и внешним устройствам (Рамеев); концепция вычислительной среды, т. е. набора однородных и универсальных цифровых автоматов с программной настройкой (Э. В. Евреинов и Ю. Г. Косарев). В 60-х гг. И. Я. Акушским и Д. И. Юдицким были получены важные результаты в области организации ЭВМ, использующих систему счисления в остаточных классах, 70-е гг. — период наиболее значительных разработок в области вычислительной техники. В 1972 начат выпуск ЦВМ Единой системы электронных вычислительных машин (ЕС ЭВМ), в разработке которой участвовало большинство стран СЭВ. ЕС ЭВМ представляет собой серию универсальных ЦВМ 3-го поколения (на интегральных схемах) с широким диапазоном производительности (от 10 тыс. до 2 млн. операций/сек). Косвенным показателем значения вычислительной техники для народного хозяйства СССР может служить доля средств вычислительной техники в общем объеме производства приборов и средств автоматизации: если в 1960 она составляла всего 8%, то в 1975 — 69%. Характерная особенность развития технической кибернетики в СССР в конце 60-х — начале 70-х гг.— широкое использование вычислительной техники в системах класса «человек — машина», в том числе в автоматизированных системах управления (АСУ). В рамках технической кибернетики проводятся исследования и решаются задачи, относящиеся главным образом к инженерным уровням управления производством (управлению агрегатом, технологическим процессом, цеховой системой). Ведущими (по кол-ву реализованных систем и используемых в них ЭВМ) являются АСУ, создаваемые в различных отраслях экономики, и АСУ технологическими процессами (АСУТП). Первые такие системы начали создаваться в СССР в конце 50-х — начале 60-х гг. В 1962 была создана одна из первых в мире систем с непосредственным цифровым управлением технологическими процессами (АСУТП «Автооператор» на Лисичанском химическом комбинате). Ряд наиболее удачно разработанных и внедренных в 60-х гг. АСУ (например, АСУ Ленинградского оптико-механического объединения, Московского завода «Фрезер», Львовского телевизионного завода, Барнаульского радиозавода) принесли значительный экономический эффект. Всего за 1966—70 в СССР было введено в действие 370 автоматизированных систем управления предприятием (АСУП) и 174 АСУТП. В начале 70-х гг. проектированием, разработкой и созданием АСУ было занято около 40 тыс. специалистов. Всего в 1971—75 было введено в действие (полностью или частично) около 1800 АСУП и около 700 АСУТП на базе ЭВМ. С начала 70-х гг. осуществляется план мероприятий по созданию Общегосударственной автоматизированной системы сбора и обработки информации для учета, планирования и управления народным хозяйством (ОГАС). Основной фикцией ОГАС должно стать обеспечение общегосударственных, республиканских и территориальных органов управления, министерств и ведомств информацией, необходимой для решения задач учета, планирования и принятия решений. Разработка ОГАС ведется в тесной связи с развитием АСУ всех уровней и создаваемой ЕАСС. В состав технической базы ОГАС должны войти Государственная сеть вычислительных центров и являющаяся частью ЕАСС Общегосударственная система передачи данных. Актуальность и возможности реализации проекта ОГАС определяются объективными потребностями экономики Советского государства, плановым характером развития советского общества и общим уровнем технической кибернетики в СССР. Планами развития народного хозяйства СССР предусмотрено дальнейшее расширение работ по созданию приборов и средств автоматизации для применения в различных отраслях промышленности, на транспорте, в энергетике, коммунальном хозяйстве и т. д.; увеличение выпуска средств вычислительной техники, универсальных и управляющих вычислительных комплексов, технологического оборудования с программным управлением, автоматических устройств регистрации и передачи данных для АСУТП и систем оптимального управления в отраслях народного хозяйства. В 70-х гг. техническая кибернетика и вычислит. техника как научные дисциплины входят в учебные программы более чем 200 вузов, а значительные по масштабам исследования в данной области проводятся в нескольких десятках НИИ и вузов, в крупнейших вычислительных центрах страны Институте проблем управления, Вычислительном центре АН СССР (оба в Москве), Институте кибернетики (Киев), Вычислительном центре Сибирского отделения АН СССР (Новосибирск), Институте автоматики и процессов управления Дальневосточного научного центра АН СССР (Владивосток) и др.. Периодические издания: «Известия АН СССР. Техническая кибернетика» (с 1963), «Автоматика и телемеханика» (с 1936), «Проблемы передачи информации» (с 1965), «Кибернетика» (с 1965), «Управляющие машины и системы» (с 1972), «Автоматика и вычислительная техника» (Рига, с 1967) и др. См. также Автоматизация производства, Автоматическое управление, Вычислительная техника, Кибернетика техническая, Оптимальное управление, Программное управление, Регулирование автоматическое, Сложная система, Управления автоматизированная система, Управление в технике, Управляющая машина, Цифровая вычислительная машина. И. А. Апокин. Машиноведение и технология производства машин Машиностроение как комплекс отраслей тяжелой промышленности, производящих орудия труда, предметы потребления и продукцию оборонного назначения, в наибольшей мере определяет технический прогресс и эффективность народного хозяйства (см. в разделе Промышленность). В данной статье рассмотрены наиболее общие проблемы машиноведения (некоторые вопросы освещены также в статьях БСЭ Автоматическое управление и Надежность) и технологии производства машин. (Развитию отдельных отраслей машиностроения в БСЭ посвящен ряд статей, например Машиностроение, Тракторостроение и др.) Машиноведение. Теория машин в механизмов. Эволюция машиностроения от отдельных машин неавтоматического действия до их автоматических систем отражена в развитии важнейших направлений теории машин и механизмов. Трудами П. Л. Чебышева в 60-х гг. 19 в. (синтез шарнирных механизмов и др.), П. О. Сомова в 80-х гг. 19 в. (пространственные кинематические цепи, решение обобщенной задачи о структуре кинематических цепей) заложены фундаментальные основы этой теории. В начале 20 в. были созданы теория структуры и классификации механизмов (Л. В. Ассур) и основы винтового метода кинематического анализа механизмов (А. П. Котельников). Важное значение имело развитие теории зубчатых механизмов Х. И. Гохманом в конце 19 в., Н. И. Мерцаловым в начале 20 в. и др. Ими разработаны новые виды зубчатых зацеплений, созданы инженерные методы их расчета и проектирования. Новый этап в науке о машинах начался после Октябрьской революции. В 20-х гг. Мерцаловым, а затем И. И. Артоболевским, Г. Г. Барановым и др. решены задачи кинематики общего случая пространственного семизвенного механизма, а в 30-х гг. Н. Г. Бруевичем — задача кинетостатики пространственных механизмов. В 30-х гг. В. В. Добровольский, И. И. Артоболевский выделили 5 семейств механизмов в зависимости от числа степеней свободы и количества условий связи и указали общие методы решения задач анализа механизмов, а также предложили систему их классификации. Работами по классификации, кинематике и кинетостатике плоских и пространственных механизмов советская школа прочно утвердила свое ведущее место в этой области мировой науки. В 30—50-е гг. И. И. Артоболевским и его школой создана обобщающая классификация механизмов по их структурным, кинематическим и динамическим свойствам, что позволило не только привести в систему существующие механизмы, но и открыть их новые виды. Изучение влияния допусков и неточностей при изготовлении деталей на кинематику и динамику механизмов вызвало к жизни в 40-е гг. «теорию реальных механизмов», основные положения которой применительно к плоским и пространственным механизмам разработаны Бруевичем. В 40—50-х гг. дальнейшее развитие получила теория синтеза механизмов (И. И. Артоболевский, Добровольский и др.). Методы синтеза, например рычажных и кулачковых механизмов, используются при проектировании двигателей, станков, текстильных, сельскохозяйственных и других машин. С 50-х гг. начались работы по анализу и синтезу механизмов с гидравлическим, пневматическим и электрическим устройствами (С. Н. Кожевников, Е. В. Герц и др.), а в 60-х гг.— механизмов с электронными и фотоэлектронными устройствами. Исследования по динамике технологических машин (в т. ч. сельскохозяйственных) были начаты В. П. Горячкиным в начале 20 в., в дальнейшем (30—60-е гг.) продолжены И. И. Артоболевским, А. П. Малышевым и др. Ими были изучены вопросы уравновешивания сельскохозяйственных машин, режимы их движения и энергетический баланс, а также решены многие задачи динамики машинных агрегатов. В конце 60-х гг. исследованы вопросы колебаний в машинах, особенно при высоких скоростях и нагрузках (Ф. М. Диментберг, К. В. Фролов). В 60-е гг. расширились исследования по теории, методам расчета, проектирования и эксплуатации машин-автоматов (С. И. Артоболевский, И. И. Капустин, Г. А. Шаумян). Проведена их классификация по признакам, связанным с числом потоков информации и путями их использования; методы теории машин-автоматов связаны с общими методами теории автоматического управления. Для обширного класса автоматов, оснащенных цифровыми системами управления, А. Е. Кобринским созданы программы их работы, методы и средства обработки исходной и дополнит. текущей информации, разработаны вопросы расчета и проектирования самонастраивающихся систем. С 50-х гг. решаются задачи синтеза автоматов, имеющих оптимальные параметры, с помощью ЭВМ (С. А. Черкудинов и др.). В 70-х гг. ведутся работы по системам машин автоматического действия, роботам-манипуляторам, шагающим машинам, динамике машин с несколькими степенями свободы, машинам с переменной массой звеньев, вибрационного действия (И. И. Артоболевский, А. Е. Кобринский, А. П. Бессонов и др.). Ведущими институтами в области теории машин и механизмов являются Государственный НИИ машиноведения, Институт геотехнической механики (УССР), Грузинский политехнический институт, Институт механики машин и полимерных материалов (Грузинская ССР), Каунасский политехнический институт, Ленинградский оптико-механический институт, Ленинградский институт инженеров железнодорожного транспорта, Челябинский политехнический институт и др. Координацию работ осуществляют Научные советы по теории машин и систем машин и по теории и принципам устройства роботов и манипуляторов. Советские ученые участвуют в Международных конгрессах по теории машин и механизмов. Президентом Международной федерации по теории машин и механизмов в 1969—75 был И. И. Артоболевский. См. также Машин и механизмов теория, Динамика машин и механизмов, Кинематика механизмов. Теория расчета машин. Русские ученые и инженеры, работавшие в 19 — начале 20 вв., значительно обогатили теорию и практику расчета и конструирования машин. Например, Н. Е. Жуковским исследована работа упругого ремня на шкивах, рассмотрено распределение сил между витками резьбы, им же совместно с С. А. Чаплыгиным решена одна из важнейших гидродинамических задач в приложении к подшипникам скольжения. Быстро развивалась теория расчета машин после Октябрьской революции 1917. В этой области в 10—20-х гг. работали ученые МВТУ (А. И. Сидоров, П. К. Худяков), многих других вузов и научно-исследовательских организаций. В 30—40-х гг. созданы методы расчетов валов и осей на выносливость, учитывающие переменность режима работы, статические и усталостные характеристики материалов, концентрацию напряжений, масштабный фактор, упрочнение поверхности (С. В. Серенсен). В начале 40-х гг. А. И. Петрусевичем, В. Н. Кудрявцевым и др. разработаны теория и принципы расчета эвольвентных зубчатых зацеплений, основные теоретические положения для расчета цилиндрических передач внешнего и внутреннего зацепления, конических, гипоидных и червячных передач. В 50-е гг. М. Л. Новиковым было предложено кругловинтовое зацепление. В инженерной практике с 60-х гг. применяются теоретические расчеты динамических нагрузок, учитывающие точность изготовления передач, характер нагружения и другие параметры (Государственный НИИ машиноведения). В 40—50-е гг. было положено начало работам по контактно-гидродинамической теории смазки. В частности, решена изотермическая контактно-гидродинамическая задача для линейного контакта.
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины